Difference between revisions of "References"

From Agri4castWiki
Jump to: navigation, search
Line 331: Line 331:
  
 
'''Valor E. and Caselles V., 1996'''. Mapping land surface emissivity from NDVI: application to European, African and South American Areas. Remote Sens. Environ. 57: 167-184.
 
'''Valor E. and Caselles V., 1996'''. Mapping land surface emissivity from NDVI: application to European, African and South American Areas. Remote Sens. Environ. 57: 167-184.
 +
 +
'''Voet, P. van der., Diepen, C.A. van, Oude Voshaar, J., 1994'''. Spatial interpolation of daily meteorological data. A knowledge-based procedure for the regions of the European Communities. Report 53.3, DLO Winand Staring Centre, Wageningen, The Netherlands, pp 105.
  
  

Revision as of 14:26, 23 January 2014



Agrawal, R., Jain, R.C., 1982. Composite model for forecasting rice yields. Indian Journal of Agricultural Sciences, 52:177-181.


Allen R. G., Pereira L. S., Raes D., Smith M. 1998. Crop evapotranspiration (guidelines for computing crop water requirements) FAO Irrigation and drainage paper 56, pp. 290.


Ångström, A, 1924. Solar and terrestrial radiation. Quarterly Journal of the Royal Meteorological Society, 50:121-125.


Armstrong, J. S., Collopy, F., 1992. Error measures for generalizing about forecasting methods: Empirical comparisons. International Journal of Forecasting, 8: 69-80.


Atjay G, Ketner P & Duvigneaud P, 1979. Terrestrial primary production and phytomass. In: Bolin B, Degens E, Kempe S and Ketner P (Eds) The Global Carbon Cycle, SCOPE 13, p. 129-182. Wiley, Chichester.


Beek, E.G., 1991. Spatial interpolation of daily meteorological data. Theoretical evaluation of available techniques. Report 53.1, DLO Winand Staring Centre, Wageningen, The Netherlands, pp 43.


Berry P.A.M., Pinnock R.A., Hilton R.D. and Johnson C.P.D., 2004. Ace: A New Global Digital Elevation Model Incorporating Satellite Altimeter Derived Heights. (http://earth.esa.int/pub/ESA_DOC/gothenburg/ )


Berthelot B. and Dedieu G., 1997. Correction of atmospheric effects for VEGETATION data. Physical Measurements and Signatures in Remote Sensing, Guyot & Phulpin (eds), Balkema, Rotterdam, ISBN 90 5410 9173.


Bignon, J., 1990. Agrométéorologie et physiologie du maïs grain dans la communauté Européenne. EUR 13041 FR, Office for Official Publications of the EU, Luxembourg, pp 198.


Bojanowski, J.S,., Vrieling, A., Skidmore, A.K., 2013. Calibration of solar radiation models for Europe using Meteosat Second Generation and weather station data Agricultural and Forest Meteorology, 176: 1–9.


Boons-Prins, E.R., Koning, G.H.J. de, Diepen, C.A. van, Penning de Vries, F.W.T., 1993. Crop-specific parameters for yield forecasting across the European Communtiy. Simulation Reports CABO-TT, no 32. Wageningen, The Netherlands, pp 160.


Bouman, B.A.M., Schapendonk, A.H.C.M., Stol, W., van Kraalingen, D.W.G. 1996. Description of the growth model LINGRA as implemented in CGMS. In Quantitative Approaches in Systems Analysis, Wageningen: European Commission, Production Ecology and AB-DLO, Wageningen University and Joint Research Centre, 7:11-22


Bradbury, D., 1994. Cereals in Europe . Statistical systems for measuring area, production and yield. Working party "crop products statistics" of the agricultural statistics committee, 10-11 October 1994, Eurostat , Luxembourg , pp 53.


Burrill, A., Vossen, P., 1992. Development of an operational agro-meteorological monitoring system. In: F. Toselli, J. Meyer-Roux (eds). Proceedings of conference on the application of remote sensing to agricultural statistics, 26-27 November 1991, Belgirate, Italy. EUR 14262 EN, Office for Official Publications of the EU, Luxembourg, p 357-360.


Burrill, A., Vossen, P., Diepen, C.A. van, 1995. A GIS database for crop modelling. In: D. King, R.J.A. Jones, A.J. Thomasson (eds). European land information systems for agro-environmental monitoring. EUR 16232 EN, Office for Official Publications of the EU, Luxembourg, p143-154.


CEC, 1985.Soil Map of the European Communities 1 : 1000 000. CEC-DGVI, Brussels-Luxembourg, pp 124.


Che, N. and J.C. Price, 1992. Survey of radiometric calibration results and methods for visible and near infrared channels of NOAA-7, -9 and -11 AVHRRs. Remote Sens. Environ., vol. 41, no. 1, p. 19-27


Coll C. and Caselles V. ,1997. A split-window algorithm for land surface temperature from advanced very high resolution radiometer data: validation and algorithm comparison. Journal of Geophysics Research, 102(D14), 16697-16713.


Conover, W. J., 1998. Practical nonparametric statistics (3 rd rd.) . John Wiley and Sons.


Cracknell A.P., 1997. The Advanced Very High Resolution Radiometer. Taylor & Francis, ISBN 0-7484-0209-8.


Dagnelie, P., Palm, R., Istasse, A., 1983. Prévision de productions agricoles dans six pays de la Communauté Economique Européenne. Faculté des Sciences Agronomiques de l'Etat, Gembloux , Belgium .


De Koning, G.H.J., Jansen, M.J.W., Boons-Prins, E.R., Diepen, C.A. van, Penning de Vries, F.W.T, 1993. Crop growth simulation and statistical validation for regional yield forecasting across the European Community. Simulation Reports CABO-TT, No. 31, AB-DLO, Wageningen, The Netherlands , pp 105.


Dennett, M.D., Elston, J., Diego, R., 1980. Weather and yield of tobacco, sugar beet and wheat in Europe . Agricultural Meteorology, 21:249-263.


Deschamps, B. and Mehta, D. R ., 1980, Predictive ability and descriptive validity of earnings forecasting models. Journal of Finance, 33, 4, 933-949


Diepen, C.A. van, 1998. Application of simple interpolation methods in agrometeorology. In: B. Gozzini, M. Hims (eds). Proceedings of workshop on dealing on spatialisation, 24-25 September 1996, Toulouse. EUR 18473 EN, Office for Official Publications of the EU, Luxembourg, p 3-17.


Diepen, C.A. van, 1992. An agrometeorological model to monitor the crop state on a regional scale in the European Community: concept, implementation and first operational outputs. In: F. Toselli, J. Meyer-Roux (eds). Proceedings of conference on the application of remote sensing to agricultural statistics, 26-27 November 1991, Belgirate, Italy. EUR 14262 EN, Office for Official Publications of the EU, Luxembourg, p 269-277.


Diepen, C.A. van, Rappoldt, C., Wolf, J., Keulen, H. van, 1988. Crop growth simulation model WOFOST. Documentation version 4.1. for World Food Studies, Wageningen, The Netherlands.


Diepen, C.A. van, Wal, T. van der, 1995. Crop growth monitoring and yield forecasting at regional and national scale. In: J.F. Dallemand, P. Vossen (eds). Workshop for Central and Eastern Europe on agrometeorological models: theory and applications in the MARS project, 21-25 November 1994, Ispra, Italy. EUR 16008 EN, Office for Off. Pub. of the EU, Luxembourg, p 143-157.


Diepen, C.A. van, Wolf, J., Keulen, H. van, 1989. WOFOST: a simulation model of crop production. Soil Use and Management, 5:16-24.


Diepen, C.A. van, 2003. Crop growth model WOFOST, in “CGMS 2002 –Expert meeting”, Session 1, EC-CGMS, (personal communication).


Doorenbos, J., Kassam, A.H., Bentvelsen, C.I.M., 1979. Yield response to water. Irrigation and Drainage Paper 33. FAO, Rome.


Eerens H, Piccard I, Royer A & Orlandi S, 2004. Methodology of the MARS Crop Yield Forecasting System. Volume 3: Remote Sensing, data processing and analysis, Office for Official Publications of the European Communities, Luxemburg, 2004 (EU-Monograph EU 21291/EN3).


Eerens H, Wouters K, Buffet D, Oger R, Dehem D & Tychon B, 2000. Use of 1km²-resolution imagery in the Belgian Crop Growth Monitoring System (B-CGMS), Proc. Conf. VEGETATION-2000, 3-6 April, 2000, Belgirate, Italy, 6p.


Eidenshink, J.C. and J.L. Faudeen, 1994. The 1 km AVHRR global land data set: first stages in implementation. International Journal of Remote Sensing, vol. 15, no. 17, p. 3443-3462


Falisse, A., 1992. Aspects agrométéorologiques du développement des cultures dans le Benelux et les régions voisines. Etude pour la betterave sucrière, le colza, le pois, le froment et l’avoine. EUR 13910 EN, Office for Official Publications of the EU, Luxembourg, pp 212.


Frère, M. and G.F. Popov, 1979. Agrometeorological crop monitoring and forecasting. FAO Plant Production and Protection Paper 17. FAO, Rome.


Genovese, G.P., 1998. The methodology, the results and the evaluation of the MARS crop yield forecasting system. In: D. Rijks, J.M. Terres, P. Vossen (eds). Agrometeorological applications for regional crop monitoring and production assessment. EUR 17735 EN, Space Applications Institute, Joint Research Centre of the European Commission, Ispra , Italy , p 67-119.


Genovese, G.P., 2001. Introduction to the MARS Crop Yield Forecasting System (MCYFS). Meeting on 4 and 5 October 2001, Luxembourg. Space Applications Institute, Joint Research Centre of the European Commission, Ispra, Italy, pp 15.


Gesell G., 1989. An algorithm for snow and ice detection using AVHRR data. An extension of the APOLLO software package. Int. J. Remote Sensing, 10(4-5): 897-905.


GISAT, 2003. Studies in support to the MARS project. Crop Monographies on Candidate countries: MOCA study. Final report. GISAT, Praha, Czech Republic, 439 pp.


Gobron N., Aussedat O. and Pinty B., 2006. JRC-FAPAR at 250 m resolution Algorithm Theoretical Basis Document. Institute for Environment and Sustainability Joint Research Centre, TP 440 I-21020 Ispra (VA), Italy Draft version 1.0 (Not for distribution)


Goot, E. van der, 1997. Technical description of interpolation and processing of meteorological data in CGMS. Joint Research Centre of the European Commission, Ispra, Italy, pp 23.


Goot, E. van der, 1998a. Spatial interpolation of daily meteorological data for the Crop Growth Monitoring System (CGMS). In: M. Bindi, B. Gozzini (eds). Proceedings of seminar on data spatial distribution in meteorology and climatology, 28 September - 3 October 1997, Volterra, Italy. EUR 18472 EN, Office for Official Publications of the EU, Luxembourg, p 141-153.


Goot, E. van der, 1998b. Data requirements and preparation for CGMS. Joint Research Centre of the European Commission, Ispra, Italy, pp 26.


Goudriaan, J., 1986. A simple and fast numerical method for the computation of daily crop photosynthesis. Agricultural and Forest Meteorology 38: 249-254.


Hair, J.F, Tatham, R.L., Anderson , R.E., Black W., 1998, Multivariate Data Analysis, Prentice Hall.


Hall et al., 1995. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sensing of Environment, 54: 127-140


Hargreaves, G.L., Hargreaves G.H., Riley, J.P., 1985. Irrigation water requirement for Senegal River Basin. Journal of Irrigation and Drainage Engineering, ASCE 111, 3:265-275.


Heemst, H.D.J. van, 1988. Plant data values required for simple crop growth simulation models: review and bibliography. Simulation Report CABO-TT 17, Centre for Agrobiological Research (CABO) and Department of Theoretical Production Ecology, Agricultural University Wageningen, The Netherlands, pp 100.


Hijmans, R.J., Guiking-Lens, I.M., Diepen, C.A. van, 1994. WOFOST 6.0; User’s guide for the WOFOST 6.0 crop growth simulation model. Technical Document 12, DLO Winand Staring Centre, Wageningen, The Netherlands, pp 143.


Hough, M.N., 1990. Agrometeorological aspects of crops in the United Kingdom and Ireland. A review for sugar beet, oilseed rape, peas, wheat, barley, oats, potatoes, apples and pears. EUR 13039 EN, Office for Official Publications of the EU, Luxembourg, pp 310.


Jansen, M.J.W., 1995. Validation of CGMS. In: J.F. Dallemand, P. Vossen (eds). Workshop for Central and Eastern Europe on agrometeorological models: theory and applications in the MARS project, 21-25 November 1994, Ispra , Italy . EUR 16008 EN, Office for Off. Publ. of the EU, Luxembourg , p 159-170.


Kappel, R.R., Supit, I., 1998. Collection of meteorological data for the MARS, MERA and PHARE projects. Joint Research Centre of the European Commission, Ispra, Italy, Joint Research Centre of the European Commission, Ispra, Italy, pp 13.


Karamouzis, N., 1985. An evaluation of M1 forecasting errors by the Federal Reserve Staff in the 1970s. Journal of Money, Credit, and Banking, 17, 4, 512-516.


Kerdiles H., 1997. Software for Processing AVHRR data for the Communities of Europe (SPACE): algorithms used in SPACE version 2. Part 1: calibration, atmospheric correction and cloud detection. Technical note, Space Applications Institute, Joint Research Centre of the European Commission, Ispra, Italy.


Keulen, H. van, and C.A. van Diepen, 1990. Crop growth models and agro-ecological characterization. In: Scaife, A. (ed.): Proceedings of the first congress of the European Society of Agronomy, 5-7 December 1990, Paris. CEC, ESA, INRA. session 2:1-16. Paris.


Keulen, H. van, Wolf, J., (eds.), 1986. Modelling of agricultural production: weather, soils and crops. Simulation Monographs, Pudoc, Wageningen, The Netherlands, pp 479.


Klisch, A., Royer, A., Lazar, C., Baruth, B. & Genovese, 2006. G. Extraction of phenological parameters from temporally smoothed vegetation indeces. ISPRS WG VIII/10 Workshop 2006 91 - 96 (2006).a <http://www.isprs.org/proceedings/XXXVI/8-W48/>


Kogan, F. (1990). Remote sensing of weather impacts on vegetation in non-homogeneous areas. International Journal of Remote Sensing, 11: 1405-1411.


Kogan, F. (1994). Droughts of the late 1980's in the United States as derived from NOAA polar-orbiting satellite data. Bulletin of the American Meteorological Society, 76(5), 655−668.


Kogan, F. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15, 91−100.


Kucera L., Genovese G. (eds), 2004. The MARS Crop Yield Forecasting System, Crop Monographies on Central European Countries , Vol 1-4 EUR 21290 EN/1-4, Office for the Official Publications of the European Communities – Luxembourg.


Laar, H.H. van, J. Goudriaan, Keulen, H. van (eds.), 1992. Simulation of crop growth for potential and water-limited production situations (as applied to spring wheat). Simulation Reports CABO-TT 27. CABO-DLO, WAU-TPE, Wageningen.


Lazar, C; Micale, F.; Orlandi, S.; Genovese, G. 2004. Frost risk assessment for Europe using a module from CERES-Wheat and the weather database from CGMS . VIII Congress of European Society for Agronomy, Copenhagen, 11-15 July 2004, pp. 287-288.


Lissens, G., Kempeneers, P. & Fierens, F., 2000. Development of a cloud, snow and cloud shadow mask for VEGETATION imagery. 303-306 (2000).a <http://www.spot-vegetation.com/pages/vgtprep/vgt2000/lissenscloud.pdf>


Loeb, N.G., 1997. In-flight calibration of NOAA-AVHRR visible and near-IR bands over Greenland and Antarctica. Int. J. Remote Sensing, vol. 18, no. 3, p. 477-490


Los, S.O., 1998. Estimation of the ratio of sensor degradation between NOAA AVHRR channels 1 and 2 from monthly NDVI composites. IEEE Trans. Geosci. and Remote Sens, vol. 36, no. 1, p. 206-213


Makridakis, S., Hibon, M., 1979. Accuracy of forecasting: an empirical investigation (with discussion). J. R. Statist. Soc. A , 142, 2: 97-145.


MeteoConsult, 1991. AMDaC System Manual. MeteoConsult, Wageningen, The Netherlands, pp 40.


Mitchel R.M., 1999. Calibration Status of the NOAA AVHRR Solar Reflectance Channels: CalWatch Revision 1. CSIRO Atmospheric Research Technical Paper No. 42


Mitchell, R.M., D.M. O'Brien, and B.W. Forgan, 1996. Calibration of the AVHRR shortwave channels: II Application to NOAA 11 during early 1991. Remote Sens. Environ., vol. 55, no. 2, p. 139-152


Monteith J.L., 1972. Solar radiation and productivity in tropical ecosystems. J. Applied Ecology, 19: 747-766.


Narciso, G., Ragni, P., Venturi, A., 1992. Agrometeorological aspects of crops in Italy, Spain and Greece. A summary review for common and durum wheat, barley, maize, rice, sugar beet, sunflower, soya bean, rape, potato, cotton, olive and grape crops. EUR 14124 EN, Office for Official Publications of the EU, Luxembourg, pp 440.


Odumodu, O.L., Griffits, J.F., 1980. Some techniques for predicting winter wheat yields in major wheat producing crop districts of Texas and Oklahoma . Agricultural Meteorology, 22:267-279.


Ouaidrari, H., N. El Saleous, E.F. Vermote, J.R. Townshend, and S.N. Goward, 2003. AVHRR Land pathfinder II (ALP II) data set: evaluation and intercomparison with other datasets. Int. J. Remote Sensing, vol. 24, no. 1, p. 135-142


Palm, R., Dagnelie, P., 1993. Tendance génerale et effets du climat dans la prévision des rendements agricoles des different pays des C.E.. EUR 15106 FR, Office for Official Publications of the EU, Luxembourg , pp 128.


Penman, H.L, 1948. Natural evaporation from open water, bare soil and grass. Proceedings Royal Society, Series A 193:120-146.


Penning de Vries, F.W.T., 1975. The cost of maintenance processes in plant cells. Annals of Botany 39:77-92.


Prescott, J.A., 1940. Evaporation from a water surface in relation to solar radiation. Transactions of the Royal Society of South Australia, 64:114-118.


Rahman H. and Dedieu G., 1994. SMAC: a Simplified Method for the Atmospheric Correction of Satellite Measurements in the Solar Spectrum. International Journal of Remote Sensing, 15(1): 123-143.


Rao, C.R.N. and J. Chen, 1995. Inter-satellite linkages for the visible and nearinfrared channels of the Advanced Very High Resolution Radiometer on the NOAA-7, -9 and -11 spacecraft. Int. J. Remote Sensing, vol. 16, no. 11, p.1931-1942


Rao, C.R.N. and J. Chen, 1996. Post-launch calibration of the visible and nearinfrared channels of the Advanced Very High Resolution Radiometer on the NOAA-14 spacecraft. Int. J. Remote Sensing, vol. 17, no. 14, p. 2743-2747


Rao, C.R.N. and J. Chen, 1999. Revised post-launch calibration of the visible and near-infrared channels of the Advanced Very High Resolution Radiometer (AVHRR) on the NOAA-14 spacecraft. Int. J. Remote Sensing, vol. 20, no. 18, p. 3485-3491


Ritchie, J.T., 1991a. Specifications of the ideal model for predicting crop yields. In: Muchow, R.C. and J.A. Bellamy (eds.).Climatic risk in crop production: models and management for the semiarid tropics and subtropics. CAB-International, Wallingford. 97-122.


Ritchie, J.T.,1991b. Wheat phasic development. In Hanks and Ritchie (ed.) “Modeling plant and soil systems. Agron. Monogr. 31”, ASA, CSSSA, SSSA, Madison, WI. p. 31-54.


Rubio E., Caselles V. and Badenas C., 1997. Emissivity measurements of several soils and vegetation types in the 8-14 µm WAVE Band: Analysis of two field methods. Remote Sens. Environ. 59: 490-521.


Russell, G., 1990. Barley knowledge base. EUR 13040 EN, Office for Official Publications of the EU, Luxembourg, pp 135.


Russell, G., Muetzefeldt, R., Taylor, K., 1997. Crop knowledge base system. EUR 17697 EN, Office for Official Publications of the EU, Luxembourg, pp 172.


Russell, G., Wilson, G.W., 1994. An agro-pedo-climatological knowledge-base of wheat in Europe. EUR 15789 EN, Office for Official Publications of the EU, Luxembourg, pp 158.


Sakamoto, S., 1978. The Z-index as a variable for crop yield estimation. Agricultural Meteorology, 19:305-313.


Sannier C., Taylor J., Du Plessis W. and Campbell K., 1998. Development of advanced satellite based products for drought monitoring: the Vegetation Productivity Indicator (VPI),


Sato M., Hansen J.E., McCormick M.P., and Pollack J.B., 1993. Stratospheric aerosol optical depth, 1850-1990. J. Geophys. Res. 98: 22987-22994. http://data.giss.nasa.gov/modelforce/strataer/


Smith, L.P., 1975. Methods in agricultural meteorology. Developments in Atmospheric Science 3.


Spitters, C.J.T., 1986. Separating the diffuse and direct component of global radiation and its implications for modelling canopy photosynthesis. Part II: Calculation of canopy photosynthesis. Agricultural and Forest Meteorology 38: 231-242.


Spitters, C.J.T., H.A.J.M. Toussaint and J. Goudriaan, 1986. Separating the diffuse and direct component of global radiation and its implications for modelling canopy photosynthesis. Part I: Components of incoming radiation. Agricultural and Forest Meteorology 38: 217-229.


Spitters, C.J.T., H. van Keulen and D.W.G. van Kraalingen, 1989. A simple and universal crop growth simulator: SUCROS87. In: Rabbinge et al., 1989. 147-181.


Spitters, C.J.T., Schapendonk, A.H.C.M. 1990. Evaluation of breeding strategies for drought tolerance in patato by means of crop growth simulator. Plant and Soil, 123: 193-203.


Supit, I., 1994. Global radiation. EUR 15745 EN, Office for Official Publications of the EU, Luxembourg, pp 194.


Supit, I., 1999. An exploratory study to improve predictive capacity of the Crop Growth Monitoring System as applied by the European Commission. Treebook No. 4, ISBN 90-80-443-5-9, Treemail Publishers, Heelsum, The Netherlands , pp 180.


Supit, I., Hooijer, A.A., Diepen, C.A. van (eds.), 1994. System description of the WOFOST 6.0 crop growth simulation model implemented in CGMS. Volume 1: Theory and Algorithms. EUR 15956 EN, Office for Official Publications of the EU, Luxembourg, pp 144.


Supit, I., Kappel, R.R. van, 1998. A simple method to estimate global radiation. Solar Energy, 63:147-160.


Swanson, E.R., Nyankori, J.C, 1979. Influence of weather and technology on corn and soybean yield trends. Agricultural Meteorology, 20:327-342.


Swets, D.L., Reed, B.C., Rowland, J.D. & Marko, S.E., 1999. A weighted least-squares approach to temporal NDVI smoothing. Proceedings of the 1999 ASPRS Annual Conference (1999).


Swinnen E. and Veroustraete F., 2008. Extending the SPOT-VEGETATION NDVI time series (1998-2006) back in time with NOAA-AVHRR data (1985-1998) for Southern Africa, IEEE TGARS, vol. 46, no. 2, p. 558-572.

Sylvander, S., Henry, P., Bastien-Thiry, C., Meunier, F. & Fuster, 2000. D. VEGETATION Geometrical Image Quality. 23-32 (2000).a <http://www.spot-vegetation.com/pages/vgtprep/vgt2000/sylvander.pdf>


Tahnk, W.R. and J.A. Coakley jr., 2001a. Improved calibration coefficients for NOAA-14 AVHRR visible and near-infrared channels. Int. J. Remote Sensing, vol. 22, no. 7, p. 1269-1283


Tahnk, W.R. and J.A. Coakley jr., 2001b. Updated calibration coefficients for NOAA-14 AVHRR channels 1 and 2. Int. J. Remote Sensing, vol. 22, no. 15, p. 3053-3057


Teillet, P.M. and B.N. Holben, 1994. Towards operational radiometric calibration of NOAA AVHRR imagery in the visible and near-infrared channels. Canadian Journal of Remote Sensing, vol. 20, no. 1, p. 1-10


Tucker, C.J., J.E. Pinzon, M.E. Brown, D.A. Slayback, E.W. Pak, R. Mahoney, E.F. Vermote and N. El Saleous, 2005. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sensing, vol. 26, no. 20, p. 4485-4498


Valor E. and Caselles V., 1996. Mapping land surface emissivity from NDVI: application to European, African and South American Areas. Remote Sens. Environ. 57: 167-184.

Voet, P. van der., Diepen, C.A. van, Oude Voshaar, J., 1994. Spatial interpolation of daily meteorological data. A knowledge-based procedure for the regions of the European Communities. Report 53.3, DLO Winand Staring Centre, Wageningen, The Netherlands, pp 105.


Verhoef W., 1984. Light scattering by leaf layers with application to canopy reflectance modelling: the SAIL-model. Remote Sensing of Environment, 16: 125-141.


Verhoef W., 1998. Theory of radiative transfer models applied in optical remote sensing of vegetation canopies, PhD-dissertation, Landbouwuniversiteit Wageningen, The Netherlands, ISBN 90-5485-804-4, 310 p.


Vermote, E. and N. El Saleous, 1996. Absolute calibration of AVHRR channels 1 and 2. In: Advances in the use of NOAA AVHRR data for land applications, G. D'Souza (eds.), p. 73-92


Veroustraete F., Sabbe H. and Eerens H., 2002. Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data. Remote Sensing of Environment, 83(3): 377-400.


Walliéz. Prototyping of an orbital model for geolocating AVHRR segments (S. Walliéz, confidential)


Weiss M, Baret F, Eerens H & Swinnen E, 2010. fAPAR over Europe for the past 28 years: A temporally consistent product derived from AVHRR and VEGETATION Sensors, Proc. 3rd International symposium “Recent Advances in Quantitative Remote Sensing”, Valencia, SPpain, 27/9-1/10 2010 (in preparation).


Wofsy F, Goulden F, Fan F, Bakwin P, Daube F, Bassow F & Bazzazz F, 1993. Net exchange of CO2 in midlatitude forests, Science, 260: 1314-1317.


Xiangming Xiao et al., 2001. Assessing the potential of VEGETATION sensor data for mapping snow and ice cover: a Normalized Difference Snow and Ice Index. Int. J. Remote Sensing, 22(13): 2479-2487.